Sythetic Data Generation

School of Data science

The Chinese University of Hong Kong, Shenzhen

August 26, 2022

Overview of generative model for tabular data

Part 1. Background of tabular data generation

- Heterogeneous Property: mixed type data.
 - Different from image and language data, tabular data has dense numerical and sparse categorical features. e.g.,categorical, ordinal, continuous

- Ubiquitous in many crucial applications:
 - medical diagnosis based on patient history
 - predictive analytics for financial applications,
 e.g., risk analysis, estimation of creditworthiness, the recommendation of investment strategies, and portfolio management

- Low-quality training data,
 - e.g., missing values, class-imbalanced
- Complex or irregular dependencies between different columns,
 - e.g., a change of a categorical feature can entirely flip a prediction on tabular data
 - Many features are uninformative

• Handling the categorical features remains particularly challenging Therefore, for classification and regression problems with tabular data, using tree ensemble models can outperform deep learning methods.¹²

Yidong Ouyang (CUHKSZ)

 $^{^1}$ Grinsztajn, et al. Why do tree-based models still outperform deep learning on tabular data? NIPS 2022 workshop track. 2 Shwartz et al. Tabular Data: Deep Learning is Not All You Need. ICML 2021 workshop track.

• Utility: Incorporate more training data to enhance the performance

- Privacy: Sensitive data from users,
 - e.g., Information Leakage of medical diagnosis, Membership Inference Attacks

- Control generation,
 - e.g., class conditional generation, imputation

Part 2. Overview of generative model for tabular data

A survey of synthesizing tabular data³

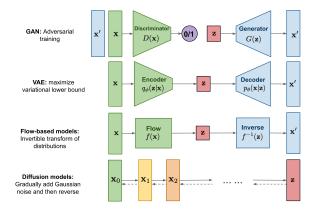
Method	Based upon	Application	
medGAN [46]	Autoencoder+GAN	Medical Records	
TableGAN [145] DCGAN	General		
Mottini et al. [149]	Cramér GAN	Passenger Records	
Camino et al. [150]	medGAN, ARAE	General	
medBGAN, medWGAN [151]	WGAN-GP, Boundary seeking GAN	Medical Records	
ITS-GAN [124]	GAN with AE for constraints	General	
CTGAN, TVAE [144]	Wasserstein GAN, VAE	General	
actGAN [126]	WGAN-GP	Health Data	
VAEM [143]	VAE (Hierarchical)	General	
OVAE [152]	Oblivious VAE	General	
TAEI [44]	AE+SMOTE (in multiple setups)	General	
Causal-TGAN [153]	Causal-Model, WGAN-GP	General	
Copula-Flow [45]	Invertible Flows	General	

TABLE III: Generation of tabular data using deep neural network models (in chronological order).

 3 Borisov, et al. (2021). Deep Neural Networks and Tabular Data: A Survey. ArXiv, abs/2110.01889.

Yidong Ouyang (CUHKSZ)

Overview of generative model:⁴



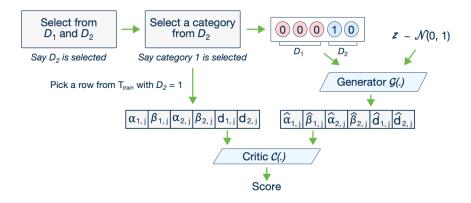
GFlowNet: A sampling method for discrete type data training by reinforcement criterion

⁴https://lilianweng.github.io/posts/2021-07-11-diffusion-models/ #connection-with-noise-conditioned-score-networks-ncsn

Yidong Ouyang (CUHKSZ)

CTGAN 5

$$\begin{array}{l} \text{Origin GAN: } \min_{G} \max_{D} \mathop{\mathbb{E}}_{\boldsymbol{x} \sim \mathbb{P}_{r}}[\log(D(\boldsymbol{x}))] + \mathop{\mathbb{E}}_{\tilde{\boldsymbol{x}} \sim \mathbb{P}_{g}}[\log(1 - D(\tilde{\boldsymbol{x}}))] \\ \text{WGAN: } \min_{G} \max_{D \in \mathcal{D}} \mathop{\mathbb{E}}_{\boldsymbol{x} \sim \mathbb{P}_{r}}[D(\boldsymbol{x})] - \mathop{\mathbb{E}}_{\tilde{\boldsymbol{x}} \sim \mathbb{P}_{g}}[D(\tilde{\boldsymbol{x}}))] \end{array}$$



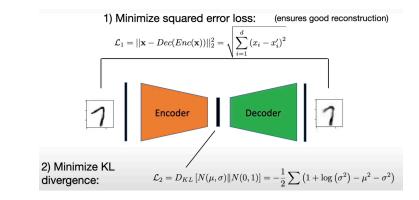
 $^{^5 {\}rm Xu},$ Lei et al. Modeling Tabular data using Conditional GAN. NeurIPS (2019).

Table 3: Ablation study results on mode-specific normalization, conditional generator and trainingby-sampling module, as well as the network architecture. The absolute performance change on real classification datasets (excluding MNIST) is reported.

	Mode-s	Mode-specific Normalization		Generater		Network Architechture		
Model	GMM5	GMM10	MinMax	w/o S.	w/o C.	GAN	WGANGP	GAN+PacGAN
Performance	-4.1%	-8.6%	-25.7%	-17.8%	-36.5%	-6.5%	+1.75%	-5.2%

Rule of thumb:

- Conditional generation
- mode-specific normalization
- WGAN+gradient penalty



- ⁶ Comments:
 - The generator in GANs does not have access to real data during the entire training process; thus, we can make CTGAN achieve differential privacy easier than TVAE.

⁶Image credits to Sebastian Raschka

⁷Xu, Lei et al. Modeling Tabular data using Conditional GAN. NeurIPS 2019.

Yidong Ouyang (CUHKSZ)

VAE can generate discrete type data

- For categorical columns, we can use the softmax over all categories.
- For continuous-discrete columns (like salary), we can model it as a continuous variable and discretize it in the end
- For ordinal-discrete columns (like ratings), we can use ordinal regression likelihood⁸.

⁸Paquet, et al. A hierarchical model for ordinal matrix factorization. Statistics and Computing, 22, 945-957.

Basic idea: VAEM uses a hierarchy of latent variables, which fits in two stages.

• In the first stage, learn one type-specific VAE for each dimension. These initial one-dimensional VAEs capture marginal distribution properties and provide a latent representation that is more homogeneous across dimensions.

• In the second stage, another VAE is used to capture dependencies among the one-dimensional latent representations from the first stage.

 $^{^9\,\}text{Ma},$ et al. VAEM: a Deep Generative Model for Heterogeneous Mixed Type Data. NIPS 2020.

Normalizing Flows ¹⁰

Modeling:

$$\mathbf{z} \sim \pi(\mathbf{z}), \mathbf{x} = f_{\theta}(\mathbf{z}), \mathbf{z} = f_{\theta}^{-1}(\mathbf{x})$$
$$p_{\theta}(\mathbf{x}) = \pi(\mathbf{z}) \left| \det \frac{d\mathbf{z}}{d\mathbf{x}} \right| = \pi \left(f_{\theta}^{-1}(\mathbf{x}) \right) \left| \det \frac{df_{\theta}^{-1}}{d\mathbf{x}} \right|$$

Training objective:

$$\min_{\theta} \mathcal{L}(\theta|\mathcal{D}) = -\min_{\theta} \frac{1}{|\mathcal{D}|} \sum_{\mathbf{x} \in \mathcal{D}} \log p_{\theta}(\mathbf{x})$$

Key problem:

Normalizing Flow cannot model discrete type data

Solution:

- Dequantization, i.e., adding real-valued noise to the discrete data.
 - Uniform dequantization
 - variational dequantization

 10 Lee, et al. Differentially Private Normalizing Flows for Synthetic Tabular Data Generation. AAAI 2022.

Yidong Ouyang (CUHKSZ)

Autoregressive model

Modeling:

$$p(\mathbf{x}) = \prod_{i=1}^{D} p(x_i \mid x_1, \dots, x_{i-1}) = \prod_{i=1}^{D} p(x_i \mid x_{1:i-1})$$

Key problem:

• Tabular data is not sequential data like images or language

Solution:

• Using Masked Autoencoder, e.g., MADE (Masked Autoencoder for Distribution Estimation)

Comments:

- No work using Autoregressive model for tabular data
- A library¹¹ using traditional machine learning methods is available.
- self-supervision loss is attractive/somehow promising, but with high limitations in tabular data

¹¹ Mahiou, et al. dpart: Differentially Private Autoregressive Tabular, a General Framework for Synthetic Data Generation. ICML 2022 workshop track.

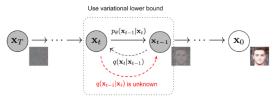


Fig. 2. The Markov chain of forward (reverse) diffusion process of generating a sample by slowly adding (removing) noise. (Image source: <u>Ho et al. 2020</u> with a few additional annotations)

Training objective: $\min_{\theta} L_{\text{VLB}} = \min_{\theta} \mathbb{E}_{q} \underbrace{ \begin{bmatrix} D_{\text{KL}} \left(q \left(\mathbf{x}_{T} \mid \mathbf{x}_{0} \right) \| p \left(\mathbf{x}_{T} \right) \right) \\ L_{T} \end{bmatrix}}_{L_{T}} + \underbrace{ \sum_{t>1} \underbrace{ D_{\text{KL}} \left(q \left(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}, \mathbf{x}_{0} \right) \| p_{\theta} \left(\mathbf{x}_{t-1} \mid \mathbf{x}_{t} \right) \right)}_{L_{t-1}} \underbrace{ - \log p_{\theta} \left(\mathbf{x}_{0} \mid \mathbf{x}_{1} \right) }_{L_{0}}]$

- Diffusion model seems to be a promising research direction on tabular data generation
- Some key points to be solved:
 - How to deal with discrete columns?
 - Discrete diffusion ¹²
 - How to deal with the relationship between discrete columns and continuous columns?
 - Conditional diffusion ¹³

 $[\]overset{12}{}_{\scriptscriptstyle \rm A}$ Austin, et al. Structured Denoising Diffusion Models in Discrete State-Spaces. NIPS 2021.

 $^{^{13}\}mathsf{Batzolis},$ et al. Conditional Image Generation with Score-Based Diffusion Models.

GFlowNet: A sampling method for discrete type data training by reinforcement objective.

Flow consistency equations:

$$\sum_{s,a:T(s,a)=s'} F(s,a) = R\left(s'\right) + \sum_{a'\in\mathcal{A}(s')} F\left(s',a'\right).$$

Training objective:

$$\mathcal{L}_{\theta,\epsilon}(\tau) = \sum_{s' \in \tau \neq s_0} \left(\log \left[\epsilon + \sum_{s,a:T(s,a)=s'} \exp F_{\theta}^{\log}(s,a) \right] - \log \left[\epsilon + R\left(s'\right) + \sum_{a' \in \mathcal{A}(s')} \exp F_{\theta}^{\log}\left(s',a'\right) \right] \right)^2$$

¹⁴Bengio, et al. Flow Network based Generative Models for Non-Iterative Diverse Candidate Generation. NIPS 2021.

- GFlowNet explicitly models the relationship between discrete columns
- Some key points to be solved:
 - GFlowNet can only deal with discrete columns, we need to deal with the relationship between discrete columns and continuous columns.
 - Conditional diffusion/ Conditinal GAN

- We get familiar with the properties of tabular data and the difficulties for modelling tabular data
- We get familiar with all types of generative model, especially for synthesizing tabular data
- some open questions